Tensorflow for Deep Learning: From Linear Regression to Reinforcement Learning, Ramsundar Bharath, Zadeh Reza Bosagh
Автор: Lapan Maxim Название: Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more ISBN: 1788834240 ISBN-13(EAN): 9781788834247 Издательство: Неизвестно Рейтинг: Цена: 60070.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book is a practical, developer-oriented introduction to deep reinforcement learning (RL). Explore the theoretical concepts of RL, before discovering how deep learning (DL) methods and tools are making it possible to solve more complex and challenging problems than ever before. Apply deep RL methods to training your agent to beat arcade ...
Автор: Sutton, Richard S. Barto, Andrew G. Название: Reinforcement learning ISBN: 0262193981 ISBN-13(EAN): 9780262193986 Издательство: MIT Press Рейтинг: Цена: 66930.00 T Наличие на складе: Нет в наличии. Описание: An account of key ideas and algorithms in reinforcement learning. The discussion ranges from the history of the field`s intellectual foundations to recent developments and applications. Areas studied include reinforcement learning problems in terms of Markov decision problems and solution methods.
Автор: Sertan Girgin; Manuel Loth; R?mi Munos; Philippe P Название: Recent Advances in Reinforcement Learning ISBN: 3540897216 ISBN-13(EAN): 9783540897217 Издательство: Springer Рейтинг: Цена: 65210.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Constitutes the revised and selected papers of the 8th European Workshop on Reinforcement Learning, EWRL 2008, which took place in Villeneuve d`Ascq, France, during June 30 - July 3, 2008.
Автор: Todd Hester Название: TEXPLORE: Temporal Difference Reinforcement Learning for Robots and Time-Constrained Domains ISBN: 3319375105 ISBN-13(EAN): 9783319375106 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents and develops new reinforcement learning methods that enable fast and robust learning on robots in real-time. It presents a novel model-based reinforcement learning algorithm.
Автор: Sugiyama Название: Statistical Reinforcement Learning ISBN: 1439856893 ISBN-13(EAN): 9781439856895 Издательство: Taylor&Francis Рейтинг: Цена: 86760.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание:
Reinforcement learning is a mathematical framework for developing computer agents that can learn an optimal behavior by relating generic reward signals with its past actions. With numerous successful applications in business intelligence, plant control, and gaming, the RL framework is ideal for decision making in unknown environments with large amounts of data.
Supplying an up-to-date and accessible introduction to the field, Statistical Reinforcement Learning: Modern Machine Learning Approaches presents fundamental concepts and practical algorithms of statistical reinforcement learning from the modern machine learning viewpoint. It covers various types of RL approaches, including model-based and model-free approaches, policy iteration, and policy search methods.
Covers the range of reinforcement learning algorithms from a modern perspective
Lays out the associated optimization problems for each reinforcement learning scenario covered
Provides thought-provoking statistical treatment of reinforcement learning algorithms
The book covers approaches recently introduced in the data mining and machine learning fields to provide a systematic bridge between RL and data mining/machine learning researchers. It presents state-of-the-art results, including dimensionality reduction in RL and risk-sensitive RL. Numerous illustrative examples are included to help readers understand the intuition and usefulness of reinforcement learning techniques.
This book is an ideal resource for graduate-level students in computer science and applied statistics programs, as well as researchers and engineers in related fields.
Автор: Marco Wiering; Martijn van Otterlo Название: Reinforcement Learning ISBN: 364244685X ISBN-13(EAN): 9783642446856 Издательство: Springer Рейтинг: Цена: 217670.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This book presents up-to-date information on the main contemporary sub-fields of reinforcement learning, including partially observable environments, hierarchical task decompositions, relational knowledge representation and predictive state representations.
Автор: Shimon Whiteson Название: Adaptive Representations for Reinforcement Learning ISBN: 3642422314 ISBN-13(EAN): 9783642422317 Издательство: Springer Рейтинг: Цена: 104480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Presenting the main results of new algorithms for reinforcement learning, this book also introduces a novel method for devising input representations as well as presenting a way to find a minimal set of features sufficient to describe the agent`s current state.
Автор: Lutz Frommberger Название: Qualitative Spatial Abstraction in Reinforcement Learning ISBN: 3642266002 ISBN-13(EAN): 9783642266003 Издательство: Springer Рейтинг: Цена: 107130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Reinforcement learning has evolved to tackle domains that are yet to be fully understood, or are too complex for a closed description. In this book the author investigates whether suitable abstraction methods can overcome the discipline`s deficiencies.
Автор: Matthew Taylor Название: Transfer in Reinforcement Learning Domains ISBN: 3642018815 ISBN-13(EAN): 9783642018817 Издательство: Springer Рейтинг: Цена: 158380.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Reinforcement Learning Background.- Related Work.- Empirical Domains.- Value Function Transfer via Inter-Task Mappings.- Extending Transfer via Inter-Task Mappings.- Transfer between Different Reinforcement Learning Methods.- Learning Inter-Task Mappings.- Conclusion and Future Work.
Автор: Dutta Sayon Название: Reinforcement Learning with Tensorflow ISBN: 1788835727 ISBN-13(EAN): 9781788835725 Издательство: Неизвестно Цена: 67430.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Reinforcement learning allows you to develop intelligent, self-learning systems. This book shows you how to put the concepts of Reinforcement Learning to train efficient models.You will use popular reinforcement learning algorithms to implement use-cases in image processing and NLP, by combining the power of TensorFlow and OpenAI Gym.
Автор: Matthew Taylor Название: Transfer in Reinforcement Learning Domains ISBN: 3642101860 ISBN-13(EAN): 9783642101861 Издательство: Springer Рейтинг: Цена: 158380.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: In reinforcement learning (RL) problems, learning agents sequentially execute actions with the goal of maximizing a reward signal. This book provides an introduction to the RL transfer problem and discusses methods which demonstrate the promise of this exciting area of research.
Автор: Christopher Gatti Название: Design of Experiments for Reinforcement Learning ISBN: 3319385518 ISBN-13(EAN): 9783319385518 Издательство: Springer Рейтинг: Цена: 102480.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This thesis takes an empirical approach to understanding of the behavior and interactions between the two main components of reinforcement learning: the learning algorithm and the functional representation of learned knowledge.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz