Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Recommender Systems, Gerald Kembellec; Ghislaine Chartron; Imad Saleh


Варианты приобретения
Цена: 146730.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 220 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Gerald Kembellec; Ghislaine Chartron; Imad Saleh
Название:  Recommender Systems
Перевод названия: Джеральд Кембеллек, Жизлен Шартрон, Имад Салех: Рекомендательные системы
ISBN: 9781848217683
Издательство: Wiley
Классификация:

ISBN-10: 1848217684
Обложка/Формат: Hardback
Страницы: 256
Вес: 0.53 кг.
Дата издания: 28.11.2014
Серия: Computing & IT
Язык: English
Иллюстрации: Black & white illustrations
Размер: 166 x 242 x 24
Читательская аудитория: Professional & vocational
Ключевые слова: Computer science
Основная тема: Information Technologies
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: Acclaimed by various content platforms (books, music, movies) and auction sites online, recommendation systems are key elements of digital strategies.

Statistical Methods for Recommender Systems

Автор: Agarwal
Название: Statistical Methods for Recommender Systems
ISBN: 1107036070 ISBN-13(EAN): 9781107036079
Издательство: Cambridge Academ
Рейтинг:
Цена: 50680.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Designing algorithms to recommend items such as news articles and movies to users is a challenging task in numerous web applications. The crux of the problem is to rank items based on users' responses to different items to optimize for multiple objectives. Major technical challenges are high dimensional prediction with sparse data and constructing high dimensional sequential designs to collect data for user modeling and system design. This comprehensive treatment of the statistical issues that arise in recommender systems includes detailed, in-depth discussions of current state-of-the-art methods such as adaptive sequential designs (multi-armed bandit methods), bilinear random-effects models (matrix factorization) and scalable model fitting using modern computing paradigms like MapReduce. The authors draw upon their vast experience working with such large-scale systems at Yahoo! and LinkedIn, and bridge the gap between theory and practice by illustrating complex concepts with examples from applications they are directly involved with.

Recommender Systems Handbook

Автор: Ricci, Francesco, Rokach, Lior, Shapira, Bracha
Название: Recommender Systems Handbook
ISBN: 1489976361 ISBN-13(EAN): 9781489976369
Издательство: Springer
Рейтинг:
Цена: 232910.00 T
Наличие на складе: Невозможна поставка.
Описание: This second edition of a well-received text, with 20 new chapters, presents a coherent and unified repository of recommender systems' major concepts, theories, methodologies, trends, and challenges. A variety of real-world applications and detailed case studies are included. In addition to wholesale revision of the existing chapters, this edition includes new topics including: decision making and recommender systems, reciprocal recommender systems, recommender systems in social networks, mobile recommender systems, explanations for recommender systems, music recommender systems, cross-domain recommendations, privacy in recommender systems, and semantic-based recommender systems.

This multi-disciplinary handbook involves world-wide experts from diverse fields such as artificial intelligence, human-computer interaction, information retrieval, data mining, mathematics, statistics, adaptive user interfaces, decision support systems, psychology, marketing, and consumer behavior. Theoreticians and practitioners from these fields will find this reference to be an invaluable source of ideas, methods and techniques for developing more efficient, cost-effective and accurate recommender systems.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия