Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Estimation and Testing Under Sparsity, van de Geer


Варианты приобретения
Цена: 41920.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 274 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: van de Geer
Название:  Estimation and Testing Under Sparsity
ISBN: 9783319327730
Издательство: Springer
Классификация:
ISBN-10: 3319327739
Обложка/Формат: Paperback
Страницы: 274
Вес: 0.45 кг.
Дата издания: 2016
Серия: ?cole d'?t? de Probabilit?s de Saint-Flour
Язык: English
Иллюстрации: XIII, 274 p.
Размер: 234 x 154 x 21
Читательская аудитория: General (us: trade)
Основная тема: Mathematics
Подзаголовок: ?cole d'?t? de Probabilit?s de Saint-Flour XLV – 2015
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: Taking the Lasso method as its starting point, this book describes the main ingredients needed to study general loss functions and sparsity-inducing regularizers. It also provides a semi-parametric approach to establishing confidence intervals and tests. Sparsity-inducing methods have proven to be very useful in the analysis of high-dimensional data. Examples include the Lasso and group Lasso methods, and the least squares method with other norm-penalties, such as the nuclear norm. The illustrations provided include generalized linear models, density estimation, matrix completion and sparse principal components. Each chapter ends with a problem section. The book can be used as a textbook for a graduate or PhD course.
Дополнительное описание: 1 Introduction.- The Lasso.- 3 The square-root Lasso.- 4 The bias of the Lasso and worst possible sub-directions.- 5 Confidence intervals using the Lasso.- 6 Structured sparsity.- 7 General loss with norm-penalty.- 8 Empirical process theory for dual norm


Statistical Learning with Sparsity

Автор: Hastie
Название: Statistical Learning with Sparsity
ISBN: 1498712169 ISBN-13(EAN): 9781498712163
Издательство: Taylor&Francis
Рейтинг:
Цена: 112290.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Discover New Methods for Dealing with High-Dimensional Data

A sparse statistical model has only a small number of nonzero parameters or weights; therefore, it is much easier to estimate and interpret than a dense model. Statistical Learning with Sparsity: The Lasso and Generalizations presents methods that exploit sparsity to help recover the underlying signal in a set of data.

Top experts in this rapidly evolving field, the authors describe the lasso for linear regression and a simple coordinate descent algorithm for its computation. They discuss the application of 1 penalties to generalized linear models and support vector machines, cover generalized penalties such as the elastic net and group lasso, and review numerical methods for optimization. They also present statistical inference methods for fitted (lasso) models, including the bootstrap, Bayesian methods, and recently developed approaches. In addition, the book examines matrix decomposition, sparse multivariate analysis, graphical models, and compressed sensing. It concludes with a survey of theoretical results for the lasso.

In this age of big data, the number of features measured on a person or object can be large and might be larger than the number of observations. This book shows how the sparsity assumption allows us to tackle these problems and extract useful and reproducible patterns from big datasets. Data analysts, computer scientists, and theorists will appreciate this thorough and up-to-date treatment of sparse statistical modeling.


Introduction to Robust Estimation and Hypothesis Testing,

Автор: Rand R. Wilcox
Название: Introduction to Robust Estimation and Hypothesis Testing,
ISBN: 0123869838 ISBN-13(EAN): 9780123869838
Издательство: Elsevier Science
Цена: 94270.00 T
Наличие на складе: Невозможна поставка.

Nonparametric Estimation under Shape Constraints

Автор: Groeneboom
Название: Nonparametric Estimation under Shape Constraints
ISBN: 0521864011 ISBN-13(EAN): 9780521864015
Издательство: Cambridge Academ
Рейтинг:
Цена: 79200.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book treats the latest developments in the theory of order-restricted inference, with special attention to nonparametric methods and algorithmic aspects. Each chapter ends with a set of exercises of varying difficulty. The theory is illustrated with the analysis of real-life data, which are mostly medical in nature.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия