Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Probabilistic Forecasting and Bayesian Data Assimilation, Reich


Варианты приобретения
Цена: 128830.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 154 шт.  
При оформлении заказа до: 2025-08-04
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Reich
Название:  Probabilistic Forecasting and Bayesian Data Assimilation
ISBN: 9781107069398
Издательство: Cambridge Academ
Классификация:

ISBN-10: 1107069394
Обложка/Формат: Hardback
Страницы: 308
Вес: 0.68 кг.
Дата издания: 14.05.2015
Серия: Language/Linguistics
Язык: English
Иллюстрации: Worked examples or exercises; 15 halftones, unspecified; 7 halftones, color; 55 line drawings, unspecified
Размер: 256 x 180 x 19
Читательская аудитория: Professional and scholarly
Ключевые слова: Computational linguistics,Mathematics,Calculus & mathematical analysis,Numerical analysis,Atmospheric physics,Maths for engineers, COMPUTERS / General
Основная тема: Mathematics
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Англии
Описание: This book focuses on the Bayesian approach to data assimilation, outlining the subject`s key ideas and concepts, and explaining how to implement specific data assimilation algorithms. It is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.

Handwriting Recognition / Soft Computing and Probabilistic Approaches

Автор: Liu Zhi-Qiang, Cai Jin-Hai, Buse Richard
Название: Handwriting Recognition / Soft Computing and Probabilistic Approaches
ISBN: 3540401776 ISBN-13(EAN): 9783540401773
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Есть
Описание: This book takes a fresh look at the problem of unconstrained handwriting recognition and introduces the reader to new techniques for the recognition of written words and characters using statistical and soft computing approaches. The types of uncertainties and variations present in handwriting data are discussed in detail. The book presents several algorithms that use modified hidden Markov models and Markov random field models to simulate the handwriting data statistically and structurally in a single framework. The book explores methods that use fuzzy logic and fuzzy sets for handwriting recognition. The effectiveness of these techniques is demonstrated through extensive experimental results and real handwritten characters and words.

Probabilistic Forecasting and Bayesian Data Assimilation

Автор: Reich
Название: Probabilistic Forecasting and Bayesian Data Assimilation
ISBN: 1107663911 ISBN-13(EAN): 9781107663916
Издательство: Cambridge Academ
Рейтинг:
Цена: 49630.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book focuses on the Bayesian approach to data assimilation, outlining the subject`s key ideas and concepts, and explaining how to implement specific data assimilation algorithms. It is an ideal introduction for graduate students in applied mathematics, computer science, engineering, geoscience and other emerging application areas.

Probabilistic Graphical Models: Principles and Techniques

Автор: Koller Daphne, Friedman Nir
Название: Probabilistic Graphical Models: Principles and Techniques
ISBN: 0262013193 ISBN-13(EAN): 9780262013192
Издательство: MIT Press
Рейтинг:
Цена: 141070.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

A general framework for constructing and using probabilistic models of complex systems that would enable a computer to use available information for making decisions.

Most tasks require a person or an automated system to reason -- to reach conclusions based on available information. The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.

Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.


Probabilistic Techniques in Analysis

Автор: Bass
Название: Probabilistic Techniques in Analysis
ISBN: 0387943870 ISBN-13(EAN): 9780387943879
Издательство: Springer
Рейтинг:
Цена: 80080.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Exploring the use of techniques drawn from probability research to tackle problems in mathematical analysis, this study includes discussion of the construction of the Martin boundary, Dahlberg`s Theorem, probabilistic proofs of the boundary Harnack principle, and much more.

Probabilistic Finite Element Model Updating Using Bayesian Statistics

Автор: Marwala Tshilidzi
Название: Probabilistic Finite Element Model Updating Using Bayesian Statistics
ISBN: 1119153034 ISBN-13(EAN): 9781119153030
Издательство: Wiley
Рейтинг:
Цена: 97100.00 T
Наличие на складе: Поставка под заказ.
Описание: Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure.

The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: * Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students.

* Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.



Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия