Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Mining Complex Data, Zbigniew W. Ras; Shusaku Tsumoto; Djamel A. Zighed


Варианты приобретения
Цена: 65210.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 187 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Zbigniew W. Ras; Shusaku Tsumoto; Djamel A. Zighed
Название:  Mining Complex Data
ISBN: 9783540684152
Издательство: Springer
Классификация:
ISBN-10: 3540684158
Обложка/Формат: Paperback
Страницы: 275
Вес: 0.44 кг.
Дата издания: 2008
Серия: Lecture Notes in Computer Science
Язык: English
Иллюстрации: Illustrations
Размер: 236 x 158 x 18
Читательская аудитория: Professional & vocational
Подзаголовок: Ecml /pkdd 2007 third international workshop, mdc 2007, warsaw, poland, september 17-21, 2007, revised selected papers
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание: This book constitutes the refereed proceedings of the Third International Workshop on Mining Complex Data, MCD 2007, held in Warsaw, Poland, in September 2007, co-located with ECML and PKDD 2007.

Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking

Автор: Foster Provost
Название: Data Science For Business: What You Need To Know About Data Mining And Dataanalytic Thinking
ISBN: 1449361323 ISBN-13(EAN): 9781449361327
Издательство: Wiley
Рейтинг:
Цена: 42230.00 T
Наличие на складе: Есть
Описание: This broad, deep, but not-too-technical guide introduces you to the fundamental principles of data science and walks you through the "data-analytic thinking" necessary for extracting useful knowledge and business value from the data you collect.

Mining Complex Data

Автор: Djamel A. Zighed; Shusaku Tsumoto; Zbigniew W. Ras
Название: Mining Complex Data
ISBN: 3642099807 ISBN-13(EAN): 9783642099809
Издательство: Springer
Рейтинг:
Цена: 194730.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The aim of this book is to gather the most recent works that address issues related to the concept of mining complex data. Actually, managing complex data within the KDD process implies to work on every step, starting from the pre-processing (e.g.

Data Mining: The Textbook

Автор: С.Aggarwal
Название: Data Mining: The Textbook
ISBN: 3319141414 ISBN-13(EAN): 9783319141411
Издательство: Springer
Рейтинг:
Цена: 65210.00 T
Наличие на складе: Поставка под заказ.
Описание: This textbook explores the different aspects of data mining from the fundamentals to the complex data types and their applications, capturing the wide diversity of problem domains for data mining issues.

Data Mining: Practical Machine Learning Tools and Techniques,

Автор: Ian H. Witten
Название: Data Mining: Practical Machine Learning Tools and Techniques,
ISBN: 0123748569 ISBN-13(EAN): 9780123748560
Издательство: Elsevier Science
Рейтинг:
Цена: 57970.00 T
Наличие на складе: Поставка под заказ.
Описание: Like the popular second edition, Data Mining: Practical Machine Learning Tools and Techniques offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. Inside, you'll learn all you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining?including both tried-and-true techniques of today as well as methods at the leading edge of contemporary research. <br><br>Complementing the book is a fully functional platform-independent open source Weka software for machine learning, available for free download. <br><br>The book is a major revision of the second edition that appeared in 2005. While the basic core remains the same, it has been updated to reflect the changes that have taken place over the last four or five years. The highlights for the updated new edition include completely revised technique sections; new chapter on Data Transformations, new chapter on Ensemble Learning, new chapter on Massive Data Sets, a new ?book release? version of the popular Weka machine learning open source software (developed by the authors and specific to the Third Edition); new material on ?multi-instance learning?; new information on ranking the classification, plus comprehensive updates and modernization throughout. All in all, approximately 100 pages of new material.<br> <br><br>* Thorough grounding in machine learning concepts as well as practical advice on applying the tools and techniques<br><br>* Algorithmic methods at the heart of successful data mining?including tired and true methods as well as leading edge methods<br><br>* Performance improvement techniques that work by transforming the input or output<br><br>* Downloadable Weka, a collection of machine learning algorithms for data mining tasks, including tools for data pre-processing, classification, regression, clustering, association rules, and visualization?in an updated, interactive interface. <br>

Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.

Автор: Witten, Ian H.
Название: Data Mining. Practical Machine Learning Tools and Techniques, 4 ed.
ISBN: 0128042915 ISBN-13(EAN): 9780128042915
Издательство: Elsevier Science
Рейтинг:
Цена: 61750.00 T
Наличие на складе: Поставка под заказ.
Описание:

Data Mining: Practical Machine Learning Tools and Techniques, Fourth Edition, offers a thorough grounding in machine learning concepts, along with practical advice on applying these tools and techniques in real-world data mining situations. This highly anticipated fourth edition of the most acclaimed work on data mining and machine learning teaches readers everything they need to know to get going, from preparing inputs, interpreting outputs, evaluating results, to the algorithmic methods at the heart of successful data mining approaches.

Extensive updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including substantial new chapters on probabilistic methods and on deep learning. Accompanying the book is a new version of the popular WEKA machine learning software from the University of Waikato. Authors Witten, Frank, Hall, and Pal include today's techniques coupled with the methods at the leading edge of contemporary research.

Please visit the book companion website at https: //www.cs.waikato.ac.nz/ ml/weka/book.html.

It contains

  • Powerpoint slides for Chapters 1-12. This is a very comprehensive teaching resource, with many PPT slides covering each chapter of the book
  • Online Appendix on the Weka workbench; again a very comprehensive learning aid for the open source software that goes with the book
  • Table of contents, highlighting the many new sections in the 4th edition, along with reviews of the 1st edition, errata, etc.

  • Provides a thorough grounding in machine learning concepts, as well as practical advice on applying the tools and techniques to data mining projects
  • Presents concrete tips and techniques for performance improvement that work by transforming the input or output in machine learning methods
  • Includes a downloadable WEKA software toolkit, a comprehensive collection of machine learning algorithms for data mining tasks-in an easy-to-use interactive interface
  • Includes open-access online courses that introduce practical applications of the material in the book

Matrix Methods in Data Mining and Pattern Recognition

Автор: Lars Eld?n
Название: Matrix Methods in Data Mining and Pattern Recognition
ISBN: 0898716268 ISBN-13(EAN): 9780898716269
Издательство: Cambridge Academ
Рейтинг:
Цена: 60190.00 T
Наличие на складе: Поставка под заказ.
Описание: Several very powerful numerical linear algebra techniques are available for solving problems in data mining and pattern recognition. This application-oriented book describes how modern matrix methods can be used to solve these problems, gives an introduction to matrix theory and decompositions, and provides students with a set of tools that can be modified for a particular application. Part I gives a short introduction to a few application areas before presenting linear algebra concepts and matrix decompositions that students can use in problem-solving environments such as MATLAB. In Part II, linear algebra techniques are applied to data mining problems. Part III is a brief introduction to eigenvalue and singular value algorithms. The applications discussed include classification of handwritten digits, text mining, text summarization, pagerank computations related to the Google search engine, and face recognition. Exercises and computer assignments are available on a Web page that supplements the book.

Developing Churn Models Using Data Mining Techniques And Social Network Analysis

Автор: Klepac, Kopal & Mrsic
Название: Developing Churn Models Using Data Mining Techniques And Social Network Analysis
ISBN: 1466662883 ISBN-13(EAN): 9781466662889
Издательство: Mare Nostrum (Eurospan)
Рейтинг:
Цена: 180180.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Churn prediction, recognition, and mitigation have become essential topics in various industries. As a means for forecasting and manageing risk, further research in this field can greatly assist companies in making informed decisions based on future possible scenarios.Developing Churn Models Using Data Mining Techniques and Social Network Analysis provides an in-depth analysis of attrition modeling relevant to business planning and management. Through its insightful and detailed explanation of best practices, tools, and theory surrounding churn prediction and the integration of analytics tools, this publication is especially relevant to managers, data specialists, business analysts, academicians, and upper-level students.

Statistical and Machine-Learning Data Mining

Автор: Ratner Bruce
Название: Statistical and Machine-Learning Data Mining
ISBN: 1439860912 ISBN-13(EAN): 9781439860915
Издательство: Taylor&Francis
Рейтинг:
Цена: 60220.00 T
Наличие на складе: Нет в наличии.
Описание: Rev. ed. of: Statistical modeling and analysis for database marketing. c2003.

Data Mining with R

Автор: Torgo
Название: Data Mining with R
ISBN: 1439810184 ISBN-13(EAN): 9781439810187
Издательство: Taylor&Francis
Рейтинг:
Цена: 66340.00 T
Наличие на складе: Нет в наличии.
Описание: This hands-on book uses practical examples to illustrate the power of R and data mining. Assuming no prior knowledge of R or data mining/statistical techniques, it covers a diverse set of problems that pose different challenges in terms of size, type of data, goals of analysis, and analytical tools. The main data mining processes and techniques are presented through detailed, real-world case studies. With these case studies, the author supplies all necessary steps, code, and data. Mirroring the do-it-yourself approach of the text, the supporting website provides data sets and R code.

Data Science and Complex Networks

Автор: Caldarelli, Guido; Chessa, Alessandro
Название: Data Science and Complex Networks
ISBN: 0199639604 ISBN-13(EAN): 9780199639601
Издательство: Oxford Academ
Рейтинг:
Цена: 61250.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book guides the reader in the analysis of big-data by providing theoretical and practical instruments to tame the complexity of such systems. Together with support provided by the companion website, it constitutes a simple and useful handbook for data analysts.

Big and Complex Data Analysis

Автор: Ahmed
Название: Big and Complex Data Analysis
ISBN: 3319415727 ISBN-13(EAN): 9783319415727
Издательство: Springer
Рейтинг:
Цена: 102480.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This volume conveys some of the surprises, puzzles and success stories in high-dimensional and complex data analysis and related fields. Examples include epigenomic data, genomic data, proteomic data, high-resolution image data, high-frequency financial data, functional and longitudinal data, and network data.

Analysis of Large and Complex Data

Автор: Wilhelm
Название: Analysis of Large and Complex Data
ISBN: 3319252240 ISBN-13(EAN): 9783319252247
Издательство: Springer
Рейтинг:
Цена: 121110.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book offers a snapshot of the state-of-the-art in classification at the interface between statistics, computer science and application fields. The contributions span a broad spectrum, from theoretical developments to practical applications; they all share a strong computational component. The topics addressed are from the following fields: Statistics and Data Analysis; Machine Learning and Knowledge Discovery; Data Analysis in Marketing; Data Analysis in Finance and Economics; Data Analysis in Medicine and the Life Sciences; Data Analysis in the Social, Behavioural, and Health Care Sciences; Data Analysis in Interdisciplinary Domains; Classification and Subject Indexing in Library and Information Science. The book presents selected papers from the Second European Conference on Data Analysis, held at Jacobs University Bremen in July 2014. This conference unites diverse researchers in the pursuit of a common topic, creating truly unique synergies in the process.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия