Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 448953
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Probabilistic robotics, Thrun, Sebastian


Варианты приобретения
Цена: 71950T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Англия: 9 шт.  
При оформлении заказа до: 15 июн 2024
Ориентировочная дата поставки: конец Июля- начало Августа
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Thrun, Sebastian
Название:  Probabilistic robotics   (Себастьян Тран: Вероятностная робототехника)
Издательство: MIT Press
Классификация:
ISBN: 0262201623
ISBN-13(EAN): 9780262201629
Обложка/Формат: Hardback
Страницы: 668
Вес: 1.384 кг.
Дата издания: 10.10.2005
Серия: Intelligent robotics and autonomous agents series
Язык: English
Иллюстрации: Illustrations
Размер: 239 x 213 x 39
Читательская аудитория: Professional & vocational
Рейтинг:
Поставляется из: США
Описание:

An introduction to the techniques and algorithms of the newest field in robotics.

Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioners perspective, and extensive lists of exercises and class projects. The books Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.



Handwriting Recognition / Soft Computing and Probabilistic Approaches

Автор: Liu Zhi-Qiang, Cai Jin-Hai, Buse Richard
Название: Handwriting Recognition / Soft Computing and Probabilistic Approaches
ISBN: 3540401776 ISBN-13(EAN): 9783540401773
Издательство: Springer
Рейтинг:
Цена: 48910 T
Наличие на складе: Есть
Описание: This book takes a fresh look at the problem of unconstrained handwriting recognition and introduces the reader to new techniques for the recognition of written words and characters using statistical and soft computing approaches. The types of uncertainties and variations present in handwriting data are discussed in detail. The book presents several algorithms that use modified hidden Markov models and Markov random field models to simulate the handwriting data statistically and structurally in a single framework. The book explores methods that use fuzzy logic and fuzzy sets for handwriting recognition. The effectiveness of these techniques is demonstrated through extensive experimental results and real handwritten characters and words.

Probabilistic Reasoning in Intelligent Systems,

Автор: Judea Pearl
Название: Probabilistic Reasoning in Intelligent Systems,
ISBN: 1558604790 ISBN-13(EAN): 9781558604797
Издательство: Elsevier Science
Рейтинг:
Цена: 41810 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Probabilistic Reasoning in Intelligent Systems is a complete and accessible account of the theoretical foundations and computational methods that underlie plausible reasoning under uncertainty. The author provides a coherent explication of probability as a language for reasoning with partial belief and offers a unifying perspective on other AI approaches to uncertainty, such as the Dempster-Shafer formalism, truth maintenance systems, and nonmonotonic logic.

The author distinguishes syntactic and semantic approaches to uncertainty--and offers techniques, based on belief networks, that provide a mechanism for making semantics-based systems operational. Specifically, network-propagation techniques serve as a mechanism for combining the theoretical coherence of probability theory with modern demands of reasoning-systems technology: modular declarative inputs, conceptually meaningful inferences, and parallel distributed computation. Application areas include diagnosis, forecasting, image interpretation, multi-sensor fusion, decision support systems, plan recognition, planning, speech recognition--in short, almost every task requiring that conclusions be drawn from uncertain clues and incomplete information.


Probabilistic Reasoning in Intelligent Systems will be of special interest to scholars and researchers in AI, decision theory, statistics, logic, philosophy, cognitive psychology, and the management sciences. Professionals in the areas of knowledge-based systems, operations research, engineering, and statistics will find theoretical and computational tools of immediate practical use. The book can also be used as an excellent text for graduate-level courses in AI, operations research, or applied probability.


Probabilistic Inductive Logic Programming

Автор: Luc De Raedt; Paolo Frasconi; Kristian Kersting; S
Название: Probabilistic Inductive Logic Programming
ISBN: 3540786511 ISBN-13(EAN): 9783540786511
Издательство: Springer
Рейтинг:
Цена: 48910 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: One of the key open questions within arti?cial intelligence is how to combine probability and logic with learning. This question is getting an increased - tentioninseveraldisciplinessuchasknowledgerepresentation, reasoningabout uncertainty, data mining, and machine learning simulateously, resulting in the newlyemergingsub?eldknownasstatisticalrelationallearningandprobabil- ticinductivelogicprogramming.Amajordriving forceisthe explosivegrowth in the amount of heterogeneous data that is being collected in the business and scienti?c world. Example domains include bioinformatics, chemoinform- ics, transportation systems, communication networks, social network analysis, linkanalysis, robotics, amongothers.Thestructuresencounteredcanbeass- pleassequencesandtrees(suchasthosearisinginproteinsecondarystructure predictionandnaturallanguageparsing)orascomplexascitationgraphs, the WorldWideWeb, andrelationaldatabases. This book providesan introduction to this ?eld with an emphasison those methods based on logic programming principles. The book is also the main resultofthesuccessfulEuropeanISTFETprojectno.FP6-508861onAppli- tionofProbabilisticInductiveLogicProgramming(APRILII,2004-2007).This projectwascoordinatedbytheAlbertLudwigsUniversityofFreiburg(Germany, Luc De Raedt) and the partners were Imperial College London (UK, Stephen MuggletonandMichaelSternberg), theHelsinkiInstituteofInformationTe- nology(Finland, HeikkiMannila), theUniversit adegliStudidiFlorence(Italy, PaoloFrasconi), andtheInstitutNationaldeRechercheenInformatiqueet- tomatiqueRocquencourt(France, FrancoisFages).Itwasconcernedwiththeory, implementationsandapplicationsofprobabilisticinductivelogicprogramming. Thisstructureisalsore?ectedinthebook. The book starts with an introductory chapter to "Probabilistic Inductive LogicProgramming"byDeRaedtandKersting.Inasecondpart, itprovidesa detailedoverviewofthemostimportantprobabilisticlogiclearningformalisms and systems. We are very pleased and proud that the scientists behind the key probabilistic inductive logic programming systems (also those developed outside the APRIL project) have kindly contributed a chapter providing an overviewoftheircontributions.Thisincludes: relationalsequencelearningte- niques (Kersting et al.), using kernels with logical representations (Frasconi andPasserini), MarkovLogic(Domingosetal.), the PRISMsystem (Satoand Kameya), CLP(BN)(SantosCostaetal.), BayesianLogicPrograms(Kersting andDeRaedt), andtheIndependentChoiceLogic(Poole).Thethirdpartthen provides a detailed account of some show-caseapplications of probabilistic - ductive logic programming, more speci?cally: in protein fold discovery (Chen et al.), haplotyping (Landwehr and Mielik] ainen) and systems biology (Fages andSoliman). The ?nal parttouchesupon sometheoreticalinvestigationsand VI Preface includes chaptersonbehavioralcomparisonof probabilisticlogicprogramming representations(MuggletonandChen)andamodel-theoreticexpressivityan- ysis(Jaeger).

Probabilistic Reasoning and Decision Making in Sensory-Motor Systems

Автор: Pierre Bessi?re; Christian Laugier; Roland Siegwar
Название: Probabilistic Reasoning and Decision Making in Sensory-Motor Systems
ISBN: 3642097847 ISBN-13(EAN): 9783642097843
Издательство: Springer
Рейтинг:
Цена: 130600 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: The chapters contain a sizable segment of cognitive systems research in Europe. Contributions come from leading academic institutions within the European projects Bayesian Inspired Brain and Artifact (BIBA) and Bayesian Approach to Cognitive Systems (BACS).

Modeling And Analysis Of Dependable Systems: A Probabilistic Graphical Model Perspective

Автор: Portinale Luigi & Codetta Raiteri Daniele
Название: Modeling And Analysis Of Dependable Systems: A Probabilistic Graphical Model Perspective
ISBN: 9814612030 ISBN-13(EAN): 9789814612036
Издательство: World Scientific Publishing
Рейтинг:
Цена: 83160 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

The monographic volume addresses, in a systematic and comprehensive way, the state-of-the-art dependability (reliability, availability, risk and safety, security) of systems, using the Artificial Intelligence framework of Probabilistic Graphical Models (PGM). After a survey about the main concepts and methodologies adopted in dependability analysis, the book discusses the main features of PGM formalisms (like Bayesian and Decision Networks) and the advantages, both in terms of modeling and analysis, with respect to classical formalisms and model languages.

Methodologies for deriving PGMs from standard dependability formalisms will be introduced, by pointing out tools able to support such a process. Several case studies will be presented and analyzed to support the suitability of the use of PGMs in the study of dependable systems.



Казахстан, 010000 Нур-султан(Астана) р-он Сарыарка, ул. Маскеу, 40 , офис 202
ТОО "Логобук" Тел:+7(7172) 448953 , +7 707 857-29-98 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия