Контакты/Проезд  Доставка и Оплата Помощь/Возврат
История
  +7 707 857-29-98
  +7(7172) 65-23-70
  10:00-18:00 пн-пт
  shop@logobook.kz
   
    Поиск книг                        
Найти
  Зарубежные издательства Российские издательства  
Авторы | Каталог книг | Издательства | Новинки | Учебная литература | Акции | Бестселлеры | |
 

Machine learning with pyspark, Singh, Pramod


Варианты приобретения
Цена: 55890.00T
Кол-во:
Наличие: Поставка под заказ.  Есть в наличии на складе поставщика.
Склад Америка: 281 шт.  
При оформлении заказа до: 2025-07-28
Ориентировочная дата поставки: Август-начало Сентября
При условии наличия книги у поставщика.

Добавить в корзину
в Мои желания

Автор: Singh, Pramod
Название:  Machine learning with pyspark
ISBN: 9781484277768
Издательство: Springer
Классификация:



ISBN-10: 1484277767
Обложка/Формат: Paperback
Страницы: 220
Вес: 0.42 кг.
Дата издания: 29.12.2021
Серия: Alternative criminology
Язык: English
Издание: 2nd ed.
Иллюстрации: 1 illustrations, color; 202 illustrations, black and white; xviii, 220 p. 203 illus., 1 illus. in color.
Размер: 25.40 x 17.78 x 1.30 cm
Читательская аудитория: Professional & vocational
Подзаголовок: Economics admissions assessment collection. updated with the latest specification, 300+ practice questions and past papers, with fully worked solutions, time saving techniques, score boosting strategies, and formula sheets.
Ссылка на Издательство: Link
Рейтинг:
Поставляется из: Германии
Описание:

Chapter 1: Introduction to Spark 3.1

Chapter Goal: The books opening chapter introduces the readers to latest changes in PySpark and updates to the framework. This chapter covers the different components of Spark ecosystem. The chapter doubles up as an introduction to the books format, including explanation of formatting practices, pointers to the books accompanying codebase online, and support contact information. The chapter sets readers expectations in terms of the content and structure of the rest of the book. This chapter provides the audience with a set of required libraries and code/data download information so that the user is able to set up their environment appropriately.

No of pages -30

Sub -Topics

1. Data status

2. Apache Spark evolution

3. Apache Spark fundamentals

4. Spark components

5. Setting up Spark 3.1


Chapter 2: Manage Data with PySpark

Chapter Goal:

This chapter covers the steps right from reading the data, pre-processing and cleaning for machine learning purpose. The chapter showcases the steps to build end to end data handling pipelines to transform and create features for machine learning. It covers simple way to use Koalas in order to leverage pandas in a distributed way in Spark.It also covers the method to automate the data scripts in order to run schedules data jobs using Airflow.

No of pages:50

Sub - Topics

1. Data ingestion

2. Data cleaning

3. Data transformation

4. End- to end data pipelines

5. Data processing using koalas in Spark on Pandas DataFrame

6. Automate data workflow using Airflow


Chapter 3: Introduction to Machine Learning

Chapter Goal:

This chapter introduces the readers to basic fundamentals of machine learning. This chapter covers different categories of machine learning and different stages in the machine learning lifecycle. It highlights the method to extract information related to model interpretation to understand the reasoning behind model predictions in PySpark .

No of pages: 25

Sub - Topics:

1. Supervised machine learning

2. Unsupervised machine learning

3. Model interpretation

4. Machine learning lifecycle


Chapter 4: Linear Regression with PySpark

Chapter Goal:

This chapter covers the fundamentals of linear regression for readers. This chapter then showcases the steps to build feature engineering pipeline and fitting a regression model using PySpark latest machine learning library

No of pages:20

Sub - Topics:

1. Introduction to linear regression

2. Feature engineering in PySpark

3. Model training

4. End-to end pipeline for model prediction


Chapter 5: Logistic Regression with PySpark

Chapter Goal:

This chapter covers the fundamentals of logistic regression for readers. This chapter then showcases the steps to build feature engineering pipeline and fitting a logistic regression model using PySpark machine learning library on a customer dataset

No of pages:25

1. Introduction to logistic regression

2. Feature engineering in PySpark

3. Model training

4. End-to end pipeline for model prediction


Chapter 6: Ensembling with Pyspark

Chapter Goal:

This chapter covers the fundamentals of ensembling methods including bagging, boosting and stacking. This chapter then showcases strengths of ensembling methods over other machine learning techniques. In the final part -the steps to build feature engineering pipeline and fitting random forest model using PySpark Machine learning library are covered

No of pages:30

1. Introduction to ensembling methods

2. Feature engineering in PySpark
Дополнительное описание: Chapter 1: Introduction to Spark 3.1.- Chapter 2: Manage Data with PySpark.- Chapter 3: Introduction to Machine Learning.- Chapter 4: Linear Regression with PySpark.- Chapter 5: Logistic Regression with PySpark.- Chapter 6: Ensembling with PySpark.- Chapt


Data Processing with Optimus: Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark

Автор: Leon Argenis, Aguirre Luis
Название: Data Processing with Optimus: Supercharge big data preparation tasks for analytics and machine learning with Optimus using Dask and PySpark
ISBN: 1801079560 ISBN-13(EAN): 9781801079563
Издательство: Неизвестно
Рейтинг:
Цена: 53940.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Data Processing with Optimus helps you learn how to load, clean, and transform data easily with Optimus. This book is a step-by-step guide for preparing data to perform key data science tasks such as machine learning, analytics, feature engineering, and reporting to help you to build end-to-end real-world applications with ease.

Machine Learning with Pyspark: With Natural Language Processing and Recommender Systems

Автор: Singh Pramod
Название: Machine Learning with Pyspark: With Natural Language Processing and Recommender Systems
ISBN: 1484241304 ISBN-13(EAN): 9781484241301
Издательство: Springer
Рейтинг:
Цена: 23280.00 T
Наличие на складе: Невозможна поставка.
Описание:

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark.
Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You’ll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification.
After reading this book, you will understand how to use PySpark’s machine learning library to build and train various machine learning models. Additionally you’ll become comfortable with related PySpark components, such as data ingestion, data processing, and data analysis, that you can use to develop data-driven intelligent applications.
What You Will Learn
Build a spectrum of supervised and unsupervised machine learning algorithmsImplement machine learning algorithms with Spark MLlib librariesDevelop a recommender system with Spark MLlib librariesHandle issues related to feature engineering, class balance, bias and variance, and cross validation for building an optimal fit model
Who This Book Is For
Data science and machine learning professionals.

Learn Pyspark: Build Python-Based Machine Learning and Deep Learning Models

Автор: Singh Pramod
Название: Learn Pyspark: Build Python-Based Machine Learning and Deep Learning Models
ISBN: 1484249607 ISBN-13(EAN): 9781484249604
Издательство: Springer
Рейтинг:
Цена: 51230.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Leverage machine and deep learning models to build applications on real-time data using PySpark. This book is perfect for those who want to learn to use this language to perform exploratory data analysis and solve an array of business challenges.

You'll start by reviewing PySpark fundamentals, such as Spark’s core architecture, and see how to use PySpark for big data processing like data ingestion, cleaning, and transformations techniques. This is followed by building workflows for analyzing streaming data using PySpark and a comparison of various streaming platforms.
You'll then see how to schedule different spark jobs using Airflow with PySpark and book examine tuning machine and deep learning models for real-time predictions. This book concludes with a discussion on graph frames and performing network analysis using graph algorithms in PySpark. All the code presented in the book will be available in Python scripts on Github.
What You'll Learn
Develop pipelines for streaming data processing using PySpark Build Machine Learning & Deep Learning models using PySpark latest offeringsUse graph analytics using PySpark Create Sequence Embeddings from Text data
Who This Book is For
Data Scientists, machine learning and deep learning engineers who want to learn and use PySpark for real time analysis on streaming data.

Learning PySpark: Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0

Автор: Lee Denny, Drabas Tomasz
Название: Learning PySpark: Build data-intensive applications locally and deploy at scale using the combined powers of Python and Spark 2.0
ISBN: 1786463709 ISBN-13(EAN): 9781786463708
Издательство: Неизвестно
Рейтинг:
Цена: 60070.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: This book will get you to grips with the Spark Python API. You`ll explore how Python can be used with Spark to build scalable and reliable data-intensive applications.

Applied Data Science Using Pyspark: Learn the End-To-End Predictive Model-Building Cycle

Автор: Kakarla Ramcharan, Krishnan Sundar, Alla Sridhar
Название: Applied Data Science Using Pyspark: Learn the End-To-End Predictive Model-Building Cycle
ISBN: 1484264991 ISBN-13(EAN): 9781484264997
Издательство: Springer
Цена: 51230.00 T
Наличие на складе: Поставка под заказ.
Описание:

Chapter 1: Setting up the Pyspark Environment

Chapter Goal: Introduce readers to the PySpark environment, walk them through steps to setup the environment and execute some basic operations

Number of pages: 20

Subtopics:

1. Setting up your environment & data

2. Basic operations

Chapter 2: Basic Statistics and Visualizations

Chapter Goal: Introduce readers to predictive model building framework and help them acclimate with basic data operations

Number of pages: 30

Subtopics:

1. Basic Statistics

2. data manipulations/feature engineering

3. Data visualizations

4. Model building framework

Chapter 3: Variable Selection

Chapter Goal: Illustrate the different variable selection techniques to identify the top variables in a dataset and how they can be implemented using PySpark pipelines

Number of pages: 40

Subtopics:

1. Principal Component Analysis

2. Weight of Evidence & Information Value

3. Chi square selector

4. Singular Value Decomposition

5. Voting based approach

Chapter 4: Introduction to different supervised machine algorithms, implementations & Fine-tuning techniques

Chapter Goal: Explain and demonstrate supervised machine learning techniques and help the readers to understand the challenges, nuances of model fitting with multiple evaluation metrics

Number of pages: 40

Subtopics:

1. Supervised:

- Linear regression

- Logistic regression

- Decision Trees

- Random Forests

- Gradient Boosting

- Neural Nets

- Support Vector Machine

- One Vs Rest Classifier

- Naive Bayes

2. Model hyperparameter tuning:

- L1 & L2 regularization

- Elastic net

Chapter 5: Model Validation and selecting the best model


Chapter Goal: Illustrate the different techniques used to validate models, demonstrate which technique should be used for a particular model selection task and finally pick the best model out of the candidate models

Number of pages: 30

Subtopics:

1. Model Validation Statistics:

- ROC

- Accuracy

- Precision

- Recall

- F1 Score

- Misclassification

- KS

- Decile

- Lift & Gain

- R square

- Adj

Hands-On Big Data Analytics with PySpark

Автор: Digital Colibri, Lai Rudy, Potaczek Bartlomiej
Название: Hands-On Big Data Analytics with PySpark
ISBN: 183864413X ISBN-13(EAN): 9781838644130
Издательство: Неизвестно
Рейтинг:
Цена: 31870.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: In this book, you`ll learn to implement some practical and proven techniques to improve aspects of programming and administration in Apache Spark. Techniques are demonstrated using practical examples and best practices. You will also learn how to use Spark and its Python API to create performant analytics with large-scale data.

Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn

Автор: Nokeri Tshepo Chris
Название: Data Science Solutions with Python: Fast and Scalable Models Using Keras, PySpark MLlib, H2O, XGBoost, and Scikit-Learn
ISBN: 1484277619 ISBN-13(EAN): 9781484277614
Издательство: Springer
Рейтинг:
Цена: 32600.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание: Intermediate-Advanced user level

Pyspark SQL Recipes: With Hiveql, Dataframe and Graphframes

Автор: Mishra Raju Kumar, Raman Sundar Rajan
Название: Pyspark SQL Recipes: With Hiveql, Dataframe and Graphframes
ISBN: 148424334X ISBN-13(EAN): 9781484243343
Издательство: Springer
Рейтинг:
Цена: 41920.00 T
Наличие на складе: Есть у поставщика Поставка под заказ.
Описание:

Carry out data analysis with PySpark SQL, graphframes, and graph data processing using a problem-solution approach. This book provides solutions to problems related to dataframes, data manipulation summarization, and exploratory analysis. You will improve your skills in graph data analysis using graphframes and see how to optimize your PySpark SQL code.
PySpark SQL Recipes starts with recipes on creating dataframes from different types of data source, data aggregation and summarization, and exploratory data analysis using PySpark SQL. You’ll also discover how to solve problems in graph analysis using graphframes.
On completing this book, you’ll have ready-made code for all your PySpark SQL tasks, including creating dataframes using data from different file formats as well as from SQL or NoSQL databases.
What You Will Learn
Understand PySpark SQL and its advanced featuresUse SQL and HiveQL with PySpark SQLWork with structured streamingOptimize PySpark SQL Master graphframes and graph processing
Who This Book Is For
Data scientists, Python programmers, and SQL programmers.


Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2)
ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz
Kaspi QR
   В Контакте     В Контакте Мед  Мобильная версия