The Identification of Molecular Spectra, Gaydon, A. G.
Автор: R. Martin Smith Название: Understanding Mass Spectra: A Basic Approach, 2nd EditionМартин Смит: Понимание масс-спектров ISBN: 047142949X ISBN-13(EAN): 9780471429494 Издательство: Wiley Рейтинг: Цена: 118050.00 T Наличие на складе: Поставка под заказ. Описание: Combines coverage of the principles underlying mass spectral analysis with clear guidelines on how to apply them in a laboratory setting.
Автор: Tennyson Jonathan Название: Astronomical Spectroscopy: An Introduction To The Atomic And Molecular Physics Of Astronomical Spectra (2Nd Edition) ISBN: 981429196X ISBN-13(EAN): 9789814291965 Издательство: World Scientific Publishing Рейтинг: Цена: 57030.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: Nearly all information about the Universe comes from the study of light as it reaches us. This book presents the basic atomic and molecular physics necessary to understand and interpret astronomical spectra. It explains how and what kind of information can be extracted from these spectra.
Автор: Kronig Название: Band Spectra and Molecular Structure ISBN: 0521292573 ISBN-13(EAN): 9780521292573 Издательство: Cambridge Academ Рейтинг: Цена: 40130.00 T Наличие на складе: Есть у поставщика Поставка под заказ. Описание: This 1930 book is a fascinating attempt to obtain a fuller understanding of molecular structure from spectral evidence. The investigation in particular throws lights on the macroscopic properties of molecular gases and the theory of chemical binding.
Автор: Lapidus Michel L., Frankenhuijsen Machiel van Название: Fractal Geometry, Complex Dimensions and Zeta Functions / Geometry and Spectra of Fractal Strings ISBN: 0387332855 ISBN-13(EAN): 9780387332857 Издательство: Springer Рейтинг: Цена: 49330.00 T Наличие на складе: Поставка под заказ. Описание: Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary.Key Features: - The Riemann hypothesis is given a natural geometric reformulation in the context of vibrating fractal strings- Complex dimensions of a fractal string, defined as the poles of an associated zeta function, are studied in detail, then used to understand the oscillations intrinsic to the corresponding fractal geometries and frequency spectra- Explicit formulas are extended to apply to the geometric, spectral, and dynamic zeta functions associated with a fractal- Examples of such formulas include Prime Orbit Theorem with error term for self-similar flows, and a tube formula- The method of diophantine approximation is used to study self-similar strings and flows- Analytical and geometric methods are used to obtain new results about the vertical distribution of zeros of number-theoretic and other zeta functionsThroughout new results are examined. The final chapter gives a new definition of fractality as the presence of nonreal complex dimensions with positive real parts.The significant studies and problems illuminated in this work may be used in a classroom setting at the graduate level. Fractal Geometry, Complex Dimensions and Zeta Functions will appeal to students and researchers in number theory, fractal geometry, dynamical systems, spectral geometry, and mathematical physics.
Казахстан, 010000 г. Астана, проспект Туран 43/5, НП2 (офис 2) ТОО "Логобук" Тел:+7 707 857-29-98 ,+7(7172) 65-23-70 www.logobook.kz